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Abstract
For non-zero � values, we present an analytical solution of the radial
Schrödinger equation for the rotating Morse potential using the Pekeris
approximation within the framework of the asymptotic iteration method. The
bound state energy eigenvalues and corresponding wavefunctions are obtained
for a number of diatomic molecules and the results are compared with the
findings of the super-symmetry, the hypervirial perturbation, the Nikiforov–
Uvarov, the variational, the shifted 1/N and the modified shifted 1/N expansion
methods.

PACS numbers: 03.65.Ge, 34.20.Cf, 34.20.Gj

1. Introduction

The Morse potential has raised a great deal of interest over the years and has been one of the
most useful models to describe the interaction between two atoms in a diatomic molecule. It
is known that the radial Schrödinger equation for this potential can be solved exactly when the
orbital angular quantum number � is equal to zero [1]. On the other hand, it is also known that
for � �= 0, one has to use some approximations to find analytical or semi-analytical solutions.
Several schemes have been presented for obtaining approximate solutions [2]. Among these
approximations, the most widely used and convenient one is the Pekeris approximation [3, 4],
which is based on the expansion of the centrifugal barrier in a series of exponentials depending
on the internuclear distance up to the second order. Other approximations have also been
developed to find better analytical formulae for the rotating Morse potential. However, all
these approximations other than the Pekeris one require the calculation of a state-dependent
internuclear distance through the numerical solutions of transcendental equations [5–8]. In this
respect, the rotating Morse potential has so far been solved by the super-symmetry (SUSY)
[2, 9], the Nikiforov–Uvarov method (NU) [10, 11], the shifted and modified shifted 1/N
expansion methods [8, 12] as well as the variational method [13] using Pekeris approximations
for � �= 0. It is also solved by using the hypervirial perturbation method (HV) [14] with the
full potential without Pekeris approximation.
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In this paper, our aim is to solve the rotating Morse potential using a different and more
practical method called the asymptotic iteration method (AIM) [15, 16] within the Pekeris
approximation and to obtain the energy eigenvalues and corresponding eigenfunctions. In the
next section, the asymptotic iteration method (AIM) is introduced. Then, in section 3, the
Schrödinger equation is solved by the asymptotic iteration method with the non-zero angular
momentum quantum numbers for the rotating Morse potential: the exact energy eigenvalues
and corresponding wavefunctions are calculated for the H2, HCl, CO and LiH diatomic
molecules and AIM results are compared with the findings of the SUSY [2], the hypervirial
perturbation method (HV) [14], the Nikiforov–Uvarov method (NU) [11] and the shifted and
modified shifted 1/N expansion methods [8, 12] as well as with the variational method [13].
Finally, section 4 is devoted to the summary and conclusion.

2. Basic equations of the asymptotic iteration method (AIM)

We briefly outline the asymptotic iteration method here and the details can be found in [15, 16].
The asymptotic iteration method is proposed to solve the second-order differential equations
of the form

y ′′ = λ0(x)y ′ + s0(x)y (1)

where λ0(x) �= 0 and s0(x), λ0(x) are in C∞(a, b). The variables, s0(x) and λ0(x), are
sufficiently differentiable. The differential equation (1) has a general solution [15]

y(x) = exp

(
−

∫ x

α(x ′) dx ′
) [

C2 + C1

∫ x

exp

(∫ x ′

(λ0(x
′′) + 2α(x ′′)) dx ′′

)
dx ′

]
(2)

if k > 0, for sufficiently large k, we obtain the α(x) values from

sk(x)

λk(x)
= sk−1(x)

λk−1(x)
= α(x), k = 1, 2, 3, . . . (3)

where

λk(x) = λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x)

sk(x) = s ′
k−1(x) + s0(x)λk−1(x), k = 1, 2, 3, . . . .

(4)

The energy eigenvalues are obtained from the quantization condition. The quantization
condition of the method together with equation (4) can also be written as follows:

δk(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0, k = 1, 2, 3, . . . . (5)

For a given potential such as the rotating Morse one, the radial Schrödinger equation is
converted to the form of equation (1). Then, s0(x) and λ0(x) are determined and sk(x) and
λk(x) parameters are calculated. The energy eigenvalues are determined by the quantization
condition given by equation (5). However, the wavefunctions are determined by using the
following wavefunction generator:

yn(x) = C2 exp

(
−

∫ x sk(x
′)

λk(x ′)
dx ′

)
. (6)
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3. Calculation of the energy eigenvalues and eigenfunctions

The motion of a particle with the reduced mass µ is described by the following Schrödinger
equation:

−h̄2

2µ

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
+ V (r)

)
�n�m(r, θ, φ)

= E�n�m(r, θ, φ). (7)

The terms in the square brackets with the overall minus sign are the dimensionless angular
momentum squared operator, L2. Defining �n�m(r, θ, φ) = un�(r)Y�m(θ, φ), we obtain the
radial part of the Schrödinger equation:(

d2

dr2
+

2

r

d

dr

)
un�(r) − 2µ

h̄2

[
V (r) +

�(� + 1)h̄2

2µr2

]
un�(r) +

2µE

h̄2 un�(r) = 0. (8)

It is sometimes convenient to define un�(r) and the effective potential as follows:

un�(r) = Rn�(r)

r
, Veff = V (r) +

�(� + 1)h̄2

2µr2
. (9)

Since (
d2

dr2
+

2

r

d

dr

)
Rn�(r)

r
= 1

r

d2

dr2
Rn�(r), (10)

the radial Schrödinger equation given by equation (8) follows that

d2Rn�(r)

dr2
+

2µ

h̄2 [E − Veff] Rn�(r) = 0. (11)

Instead of solving the partial differential equation (7) in three variables r, θ and φ, we now solve
a differential equation involving only the variable r, but dependent on the angular momentum
parameter �, which makes the solution of this equation difficult for � �= 0 or sometimes
impossible within a given potential.

The Morse potential we examine in this paper is defined as

VMorse(r) = D(e−2αx − 2 e−αx) (12)

with x = (r − re)/re and α = are. Here, D and α denote the dissociation energy and Morse
parameter, respectively. re is the equilibrium distance (bound length) between nuclei and
a is a parameter to control the width of the potential well. For the H2 diatomic molecule,
the effective potential, which is the sum of the centrifugal and Morse potentials, is shown in
figure 1 for various values of the orbital angular momentum. The superposition of the attractive
and repulsive potentials results in the formation of a potential pocket, whose width and depth
depend on the orbital angular momentum quantum number for a given molecular potential.
The potential pocket becomes shallower as the orbital angular momentum quantum number �

increases, which also indicates that the number of states supported by the potential decreases.
This pocket is also very important for the scattering case due to the interference of the barrier
and internal waves, which creates the oscillatory structure in the cross section. The effect of
this pocket can be understood in terms of the interference between the internal and barrier
waves that corresponds to a decomposition of the scattering amplitude into two components,
the inner and external waves [17–19].

The effective potential together with the Morse potential for � �= 0 can be written as

Veff(r) = V�(r) + VMorse(r) = �(� + 1)h̄2

2µr2
+ D(e−2αx − 2 e−αx). (13)
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Å

Figure 1. The shape of the rotating Morse potential for H2 diatomic molecule is plotted against
the separation r for different orbital angular momentum quantum numbers.

It is known that the Schrödinger equation cannot be solved exactly for this potential for � �= 0
by using the standard methods such as SUSY and NU. As it is seen from equation (13), the
effective potential is a combination of the exponential and inverse square potentials, which
cannot be solved analytically. Therefore, an approximation has to be made: the most widely
used and convenient one is the Pekeris approximation. This approximation is based on the
expansion of the centrifugal barrier in a series of exponentials depending on the internuclear
distance, keeping terms up to second order, so that the effective �-dependent potential keeps
the same form as the potential with � = 0 [2]. It should be pointed out, however, that this
approximation is valid only for low vibrational energy states. In the Pekeris approximation,
by change of the coordinates x = (r − re)/re, the centrifugal potential is expanded in a series
around x = 0

V�(x) = �(� + 1)h̄2

2µr2
e

1

(1 + x)2
= γ (1 − 2x + 3x2 − 4x3 + · · ·) (14)

where γ = �(�+1)h̄2

2µr2
e

. Taking up to the second-order degrees in this series and writing them in
terms of exponentials, we get

Ṽ�(x) = γ (c0 + c1 e−αx + c2 e−2αx). (15)

In order to determine the constants c0, c1 and c2, we also expand this potential in a series of x

Ṽ�(x) = γ
(
c0 + c1 + c2 − (c1 + 2c2)αx +

(c1

2
+ 2c2

)
α2x2 + · · ·

)
. (16)

Comparing equal powers of equations (14) and (16), we obtain the constants c0, c1 and c2 as

c0 = 1 − 3

α
+

3

α2
, c1 = 4

α
− 6

α2
, c2 = − 1

α
+

3

α2
. (17)

Now, the effective potential with Pekeris approximation becomes

Ṽeff(x) = γ (c0 + c1 e−αx + c2 e−2αx) + D(e−2αx − 2 e−αx). (18)
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Instead of solving the radial Schrödinger equation for the effective potential given by
equation (13), we solve the radial Schrödinger equation for the new effective potential given
by equation (18) obtained by using the Pekeris approximation. Inserting this effective potential
equation (18) into equation (11) and using the following ansätze

−ε2 = 2µr2
e

h̄2 (E − γ c0), β2
1 = 2µr2

e

h̄2 (2D − γ c1), β2
2 = 2µr2

e

h̄2 (γ c2 + D). (19)

The radial Schrödinger equation takes the following form:

d2Rn�(x)

dx2
+

(−ε2 + β2
1 e−αx − β2

2 e−2αx
)
Rn�(x) = 0. (20)

If we rewrite equation (20) by using a new variable of the form y = e−αx , we obtain

d2Rn�(y)

dy2
+

1

y

dRn�(y)

dy
+

[
− ε2

α2

1

y2
+

β2
1

α2

1

y
− β2

2

α2

]
Rn�(y) = 0. (21)

In order to solve this equation with AIM for � �= 0, we should transform this equation to
the form of equation (1). Therefore, the reasonable physical wavefunction we propose is as
follows:

Rn�(y) = y
ε
α e− β2

α
yfn�(y). (22)

If we insert this wavefunction into equation (21), we have the second-order homogeneous
linear differential equations in the following form:

d2fn�(y)

dy2
=

(
2β2αy − 2εα − α2

yα2

)
dfn�(y)

dy
+

(
2εβ2 + αβ2 − β2

1

yα2

)
fn�(y) (23)

which is now amenable to an AIM solution. By comparing this equation with equation (1),
we can write the λ0(y) and s0(y) values and by means of equation (4) we may calculate λk(y)

and sk(y). This gives (the subscripts are omitted)

λ0 =
(

2β2y − 2ε − α

αy

)
s0 =

(
2εβ2 + αβ2 − β2

1

α2y

)
λ1 = −3β2αy + 6αε + 2α2 − 6yεβ2 − yβ1

2 + 4β2
2y2 + 4ε2

α2y2

s1 = 2

(
2εβ2 + αβ2 − β2

1

)
(−α + β2y − ε)

α3y2

. . . .

(24)

Combining these results with the quantization condition given by equation (5) yields

s0

λ0
= s1

λ1
⇒ ε0 = −1

2

αβ2 − β2
1

β2

s1

λ1
= s2

λ2
⇒ ε1 = −1

2

3αβ2 − β2
1

β2

s2

λ2
= s3

λ3
⇒ ε2 = −1

2

5αβ2 − β2
1

β2
.

. . . .

(25)
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Table 1. For the H2 diatomic molecule, the comparison of the energy eigenvalues (in eV) obtained
by using AIM with other methods for different values of n and �. Potential parameters are
D = 4.7446 eV, a = 1.9425 (Å)−1, re = 0.7416 Å, h̄c = 1973.29 eV Å and µ = 0.503 91 amu.

AIM SUSY HV Variational Modified shifted 1/N Shifted 1/N
n � results results results results expansion results expansion results

0 0 −4.476 01 −4.476 01 −4.476 01 −4.4758 −4.4760 −4.4749
5 −4.258 80 −4.258 80 −4.259 01 −4.2563 −4.2590 −4.2590

10 −3.721 93 −3.721 93 −3.724 73 −3.7187 −3.7247 −3.7247

5 0 −2.220 52 −2.220 51 −2.220 51 – −2.2205 −2.2038
5 −2.043 55 −2.043 53 −2.052 85 – −2.0530 −2.0525

10 −1.603 91 −1.603 89 −1.652 65 – −1.6535 −1.6526

7 0 −1.537 44 −1.537 43 −1.537 43 – −1.5374 −1.5168
5 −1.376 56 −1.376 54 −1.392 63 – −1.3932 −1.3887

10 −0.975 81 −0.975 78 −1.052 65 – −1.0552 −1.0499

Table 2. For the HCl diatomic molecule, the comparison of the energy eigenvalues (in eV)
obtained by using AIM with other methods for different values of n and �. Potential parameters
are D = 37 255 cm−1, a = 1.8677 (Å)−1, re = 1.2746 Å, h̄c = 1973.29 eV Å and µ =
0.980 1045 amu.

AIM Variational Modified shifted 1/N Shifted 1/N
n � results results expansion results expansion results

0 0 −4.4356 −4.4360 −4.4355 −4.4352
5 −4.3968 −4.3971 −4.3968 −4.3967

10 −4.2941 −4.2940 −4.2940 −4.2939

5 0 −2.8051 – −2.8046 −2.7727
5 −2.7721 – −2.7718 −2.7508

10 −2.6847 – −2.6850 −2.6712

7 0 −2.2570 – −2.2565 −2.2002
5 −2.2263 – −2.2262 −2.1874

10 −2.1451 – −2.1461 −2.1194

When the above expressions are generalized, the eigenvalues turn out as

εn� = β2
1 − (2n + 1)αβ2

2β2
, n = 0, 1, 2, 3, . . . . (26)

Using equation (19), we obtain the energy eigenvalues En� as

En� = − h̄2

2µr2
e

[
β2

1

2β2
−

(
n +

1

2

)
α

]2

+ γ c0. (27)

As it is seen that the energy eigenvalue equation is easily obtained by using AIM. This is
the advantage of the AIM that it gives the eigenvalues directly by transforming the radial
Schrödinger equation into a form of y ′′ = λ0(r)y

′ + s0(r)y. In order to test the accuracy
of equation (27), we calculate the energy eigenvalues of the H2, HCl, CO and LiH diatomic
molecules. The AIM results are compared with those obtained by SUSY method [2] using
original Pekeris approximation, the hypervirial perturbation method (HV) [14], the shifted
1/N and modified shifted 1/N expansion methods [8] for the H2 diatomic molecule in table 1.
In table 2, we show the same comparison for the HCl diatomic molecule. Furthermore, the
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Table 3. For the CO diatomic molecule, the comparison of the energy eigenvalues (in eV)
obtained by using AIM with other methods for different values of n and �. Potential parameters
are D = 90 540 cm−1, a = 2.2994 (Å)−1, re = 1.1283 Å, h̄c = 1973.29 eV Å and µ =
6.860 6719 amu.

AIM NU Variational Modified shifted 1/N Shifted 1/N
n � results results results expansion results expansion results

0 0 −11.0915 −11.091 −11.093 −11.092 −11.091
5 −11.0844 −11.084 −11.085 −11.084 −11.084

10 −11.0653 −11.065 −11.066 −11.065 −11.065

5 0 −9.7952 −9.795 – −9.795 −9.788
5 −9.7883 −9.788 – −9.788 −9.782

10 −9.7701 −9.769 – −9.770 −9.765

7 0 −9.2992 −9.299 – −9.299 −9.286
5 −9.2925 −9.292 – −9.292 −9.281

10 −9.2745 −9.274 – −9.274 −9.265

Table 4. For the LiH diatomic molecule, the comparison of the energy eigenvalues (in eV)
obtained by using AIM with other methods for different values of n and �. Potential parameters
are D = 20 287 cm−1, a = 1.1280 (Å)−1, re = 1.5956 Å, h̄c = 1973.29 eV Å and µ =
0.880 1221 amu.

AIM NU Variational Modified shifted 1/N Shifted 1/N
n � results results results expansion results expansion results

0 0 −2.4289 −2.4287 −2.4291 −2.4280 −2.4278
5 −2.4013 −2.4012 −2.4014 −2.4000 −2.3999

10 −2.3288 −2.3287 −2.3287 −2.3261 −2.3261

5 0 −1.6477 −1.6476 – −1.6402 −1.6242
5 −1.6238 −1.6236 – −1.6160 −1.6074

10 −1.5607 −1.5606 – −1.5525 −1.5479

7 0 −1.3776 −1.3774 – −1.3682 −1.3424
5 −1.3550 −1.3549 – −1.3456 −1.3309

10 −1.2958 −1.2957 – −1.2865 −1.2781

AIM results are compared with those obtained by NU method [11], shifted 1/N and modified
shifted 1/N expansion methods [8] for the CO and LiH diatomic molecules in tables 3 and 4,
respectively. As it can be seen from the results presented in these tables that the AIM results
are in good agreement with the findings of the other methods.

After we find the energy eigenvalues, the following wavefunction generator can be used
to find fn(y) functions by using AIM

fn(y) = exp

(
−

∫ y sk

λk

dy ′
)

(28)

where n represents the radial quantum number and k shows the iteration number. Below, the
first few f (y) functions can be seen:

f0(y) = 1 (29)

f1(y) = (
2αβ2 − β2

1

) (
1 − 2β2y

α
(

β12−3αβ2

αβ2
+ 1

))
(30)
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f2(y) = (
β2

1 − 4αβ2
)(

β2
1 − 3αβ2

)1 − 4β2y

α
( β2

1 −5αβ2

αβ2
+ 1

) +
4β2

2y2

α2
( β2

1 −5αβ2

αβ2
+ 1

)( β2
1 −5αβ2

αβ2
+ 2

)

(31)

f3(y) = (−4αβ2 + β2
1

)(
β2

1 − 5αβ2
)(

β2
1 − 6αβ2

)1 − 6β2y

α
( β2

1 −7αβ2

β2α
+ 1

)
+

12β2
2y2

α2
( β2

1 −7αβ2

αβ2
+ 1

)( β2
1 −7αβ2

αβ2
+ 2

) − 8β3
2y3

α3
( β2

1 −7αβ2

αβ2
+ 1

)( β2
1 −7αβ2

αβ2
+ 2

)( β2
1 −7αβ2

αβ2
+ 3

)


. . . (32)

It can be understood from the results given above that we can write the general formula for
fn(y) as follows:

fn(y) = (−1)n

(
2n−1∏
k=n

(
β2

1 − (k + 1)αβ2
))

1F1

(
−n,

2εn

α
+ 1; 2β2y

α

)
. (33)

Thus, we can write the total radial wavefunction as follows:

Rn� = (−1)n

(
2n−1∏
k=n

(
β2

1 − (k + 1)αβ2
))

y
εn
α e− β2

α
y

1F1

(
−n,

2εn

α
+ 1; 2β2y

α

)
. (34)

When the hypergeometric function is written in terms of the Laguerre polynomials, we get

Rn� = Ny
εn
α e− β2

α
yL

2εn
α

n

(
2β2

α
y

)
(35)

where N is the normalization constant and can be obtained from N2
∫ ∞

0 y
2εn
α

e− 2β2
α

y
[
L

2εn
α

n (
2β2

α
y)

]2
dy = 1 as follows:

N = 1

n!

(
2β2

α

) ξ+1
2

√
(n − ξ)!

n!
(36)

where ξ = 2εn

α
.

4. Conclusion

We have shown an alternative method to obtain the energy eigenvalues and corresponding
eigenfunctions of the rotating Morse potential using Pekeris approximation within the
framework of the asymptotic iteration method. The main results of this paper are the energy
eigenvalues and eigenfunctions, which are given by equations (27) and (35), respectively.
The energy eigenvalues are obtained for the H2, HCl, CO and LiH diatomic molecules. Our
AIM results are compared with the findings of the other methods such as the SUSY [2],
the hypervirial perturbation method (HV) [14], the Nikiforov–Uvarov method (NU) [11] and
the shifted and modified shifted 1/N expansion methods [8, 12] as well as the variational
method [13] in tables 1–4. The advantage of the asymptotic iteration method is that it
gives the eigenvalues directly by transforming the radial Schrödinger equation into a form of
y ′′ = λ0(r)y

′ + s0(r)y. The wavefunctions are easily constructed by iterating the values of
s0(r) and λ0(r). The method presented in this study is a systematic one and it is very efficient
and practical. It is worth extending this method to the solution of other interaction problems.
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